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Abstract—Quantitative structure–activity relationships (QSARs) attempt to correlate chemical structure with activity using statistical
approaches. The QSAR models are useful for various purposes including the prediction of activities of untested chemicals. Quan-
titative structure–activity relationships and other related approaches have attracted broad scientific interest, particularly in the
pharmaceutical industry for drug discovery and in toxicology and environmental science for risk assessment. An assortment of
new QSAR methods have been developed during the past decade, most of them focused on drug discovery. Besides advancing our
fundamental knowledge of QSARs, these scientific efforts have stimulated their application in a wider range of disciplines, such
as toxicology, where QSARs have not yet gained full appreciation. In this review, we attempt to summarize the status of QSAR
with emphasis on illuminating the utility and limitations of QSAR technology. We will first review two-dimensional (2D) QSAR
with a discussion of the availability and appropriate selection of molecular descriptors. We will then proceed to describe three-
dimensional (3D) QSAR and key issues associated with this technology, then compare the relative suitability of 2D and 3D QSAR
for different applications. Given the recent technological advances in biological research for rapid identification of drug targets,
we mention several examples in which QSAR approaches are employed in conjunction with improved knowledge of the structure
and function of the target receptor. The review will conclude by discussing statistical validation of QSAR models, a topic that has
received sparse attention in recent years despite its critical importance.
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INTRODUCTION

Quantitative structure–activity relationship (QSAR) models
are quantitative regression methods that attempt to relate chem-
ical structure to biological activity. Quantitative structure–ac-
tivity relationship and related methods have been applied ex-
tensively in a wide range of scientific disciplines, including
chemistry, biology, and toxicology [1,2]. In both drug dis-
covery and environmental toxicology [3], QSAR models are
now regarded as a scientifically credible tool for predicting
and classifying the biological activities of untested chemicals.
As we enter the new millennium, QSAR has become inexo-
rably embedded as an essential tool in the pharmaceutical in-
dustry, from lead discovery and optimization to lead devel-
opment [4,5]. For example, a growing trend is to use QSAR
early in the drug discovery process as a screening and en-
richment tool to eliminate from further development those
chemicals lacking druglike properties [6] or those chemicals
predicted to elicit a toxic response. This developing scenario
portends the spread of QSAR beyond the pharmaceutical in-
dustry to human and environmental regulatory authorities for
use in toxicology [7–13].

Computer hardware and software improvements have been
enabling technologies in QSAR development during the past
decade. Within the pharmaceutical industry alone, the enor-
mous financial incentives to accelerate the drug discovery pro-
cess and to improve the odds of success by enriching the drug
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pipeline with more effective and less toxic candidates are pow-
erful driving forces that have led to improved QSAR ap-
proaches and associated software. The integration of QSAR
modeling with recent advances in hardware and software for
data storage and management has further stimulated its wider
implementation [14]. The algorithms used in QSAR software
also improved markedly, particularly with respect to the large
and growing pool of descriptors used to characterize molecular
structure and properties.

The fundamental assumption of QSAR is that variations in
the biological activity of a series of chemicals that target a
common mechanism of action are correlated with variations
in their structural, physical, and chemical properties [15]. Since
presumably these structurally related properties of a chemical
can be determined by experimental or computational means
much more efficiently than its biological activity using in vitro
or in vivo approaches, a statistically validated QSAR model
is capable of predicting the biological activity of a new chem-
ical within the same series in lieu of the time-consuming and
labor-intensive processes of chemical synthesis and biological
evaluation. Applied judiciously, QSAR can save substantial
amounts of time, money, and human resources.

QSAR MODELING

This generally involves three steps: (1) collect or, if pos-
sible, design a training set of chemicals; (2) choose descriptors
that can properly relate chemical structure to biological activ-
ity; and (3)apply statistical methods that correlate changes in
structure with changes in biological activity. Obtaining a good-
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quality QSAR model with the ability to predict activity of a
chemical outside the training set depends on many factors in
the approach and execution of each of the three steps.

Quality of data

Data should come from the same assay protocol, and care
should be taken to avoid interlaboratory variability. Any bad
data points will tend to corrupt the proper correlation of struc-
ture and activity. Rules of thumb for a good QSAR data set
are that the dose–response relationship should be smooth, the
potency (or affinity) should be reproducible, the activity range
should span two or more orders of magnitude from the least
active to the most active chemical in the series, the number
of chemicals used to build the QSAR model should be suffi-
ciently large to ensure statistical stability, the activities of the
chemicals should be evenly distributed across the range of
activity, and the chemicals selected for the training set should
possess enough structural diversity to span the range of chem-
istry space associated with the biological activity under study.

Descriptor selection

Many types of chemical structure descriptors are available
from commercial software. Obtaining a statistically robust
model is very much dependent on how well the selected de-
scriptors can encode the variation of activity with structure.
The more that is known at the molecular level about the bi-
ological mechanism of action of the chemicals, the better the
chemist is able to select among the wide variety and types of
specific molecular descriptors. Commercially available mo-
lecular modeling programs often include statistical tools to
help in evaluating which descriptors best encode structure–
activity variation. Some of these tools include the genetic al-
gorithm (GA) in its various incarnations, which employs the
evolutionary rules of natural selection to select the optimal
(fittest) subset of descriptors amongst its wide set for a par-
ticular problem.

Statistical methods

It is also critical that the QSAR method selected to develop
the structure–activity correlation be suitable. Although the re-
lationship between a molecular descriptor and biological ac-
tivity may be linear or nonlinear, it is still common practice
today to deploy linear approaches such as multiple (or mul-
tivariate) linear regression (MLR) or partial least squares (PLS)
regression to construct the QSAR model. For nonlinear mod-
eling, the Polynomial Neural Network (PNN) offers an alter-
native that combines the best features of Artificial Neural Net-
works (ANNs) and MLR/PLS by providing the inherent non-
linearity of the ANN with the desired analytical regression
equation furnished by MLR and PLS [16]. Several statistical
approaches that are commonly used in QSAR modeling are
listed in the Appendix along with a brief description of their
theory and procedure. The most common scenario encountered
in practice is for the number of possible descriptors to exceed
the number of chemicals, a situation that can lead to chance
correlations. Fortunately, soft modeling methods such as PLS
reduce the risk of encountering chance correlations by trans-
forming the dimensionality of the regression problem from
chemical-descriptor space to so-called principal components
(PCs) space.

QSAR models are useful in research for purposes beyond
prediction [17]. Additional benefits that may accrue include
leveraging existing structure–activity data, providing insights

into mechanism or identifying an alternative mechanism (e.g.,
metabolism) of action, identifying important structural char-
acteristics, suggesting new design strategies and synthetic tar-
gets, narrowing the dose range for a planned assay, assisting
in generation of new hypotheses to guide further research, and
revealing chemicals that deviate from the QSAR model.

TRANSFORMATION OF DRUG DISCOVERY

The drug discovery and development process used by phar-
maceutical companies has undergone a radical metamorphosis
over the past decade. What used to be likened to the search
for a needle in a haystack, one chemical at a time and one
target at a time, is now more akin to a search for many needles
in many haystacks. The transformation was spawned by the
advent of combinatorial chemistry and high throughput screen-
ing (HTS) that generate more needles and of genomics that
generate more haystacks. Quantitative structure–activity re-
lationship figures prominently in this evolved paradigm
[18,19]. Combinatorial library design often uses diversity anal-
ysis and QSAR to select chemicals for synthesis and testing.
The rapid turnaround to produce data in this new paradigm
requires concomitantly fast QSARs to process information de-
rived from the chemical library design–combinatorial synthe-
sis–HTS cycle. Data culminating from the HTS assays are then
available to build more robust QSAR models that can be used
to guide more refined lead discovery, optimization, and de-
velopment.

Within the new paradigm is also a growing trend to build
models to predict not only potency and selectivity but also
absorption, distribution, metabolism, elimination, and toxicity
(ADMET) properties, that is, to predict with QSAR the phar-
macokinetic and pharmacodynamic properties that make a
chemical druglike or properties that may induce toxic side
effects [20]. Unfavorable ADMET properties are a major cause
of a chemical’s removal from development, and compelling
financial incentives exist to eliminate those leads that are not
viable as commercial products as early as possible in the drug
development process. For example, QSAR can be used to es-
timate such key properties as permeability [21,22], solubility
[23,24], and cytochrome P450 metabolism [25,26].

The term QSAR is sometimes interpreted broadly to include
methodologies that predict activity on an ordinal or categorical
scale. For the purpose of this review, we adopt a more con-
servative definition of QSARs, that is, methodologies that pre-
dict activities strictly on an interval or continuous scale. A
companion paper by Tong et al. in this volume reviews qual-
itative predictive methods that encompass the broader defi-
nition.

Several commercial software products have been success-
fully used in the areas of acute toxicity prediction [3], carci-
nogenicity prediction [27], skin sensitization prediction, and
so on [28]. These include CASE/MultiCASE (MultiCASE,
Beachwood, OH, USA) [29,30], TOPKAT (Accelrys, San Di-
ego, CA, USA) [31,32], COREPA [33,34], and rule-based ex-
pert systems, such as DEREK (LHASA Group, Chemistry
Department of Harvard University, Cambridge, MA, USA)
[35,36] and ONCOLOGIC (Logichem, Boyertown, PA, USA)
[37]. Most of these software products employ algorithms,
based on either 2D or sometimes 3D structure fragments, that
produce a qualitative rather than a quantitative prediction. A
number of good review papers can be found in the literature
[28,38], and these methods are not further covered in this
review.
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Quantitative structure–activity relationship methods have
undergone rapid change during the past decade. The primary
aim of this review is to summarize the status of QSAR with
emphasis on conveying the utility and limitations of QSAR
technology together with examples of representative applica-
tions. Since it is impossible to cover such a broad topic in
depth in a single communication, a robust bibliography is pro-
vided for the interested reader. We will first review 2D QSAR
together with a discussion of the availability and appropriate
selection of molecular descriptors. We will then proceed to
describe 3D QSAR and key issues associated with this tech-
nology, then compare the relative suitability of 2D and 3D
QSAR for different applications. Given the recent technolog-
ical advances in biological research for rapid identification of
drug targets, we mention several examples in which QSAR
approaches are employed in conjunction with improved knowl-
edge of the structure and function of the targeted receptor. The
review will conclude by discussing statistical validation of
QSAR models, a topic that has received sparse attention in
recent years despite its critical importance. In this regard, it
is essential to note that the utility of a QSAR model, regardless
of the inherent sophistication of the methods employed and
the time expended in its development, is only as good as the
quality of the data modeled.

2D QSAR

Investigation of the effect of physicochemical properties
on activity and toxicity dates back to the 19th century [39,40].
In 1935, the Hammett constant (s) was successfully used to
correlate the equilibrium constants and reactivity of organic
acids and bases [41,42]. However, difficulties were encoun-
tered when investigators attempted to apply Hammett-type re-
lationships to biological systems, indicating that other struc-
tural determinants needed consideration. In 1969, the seminal
work by Hansch inaugurated a new era of QSARs in which
the hydrophobicity expressed as the octanol–water partition
coefficient (log P) was found highly valuable for predicting
various biological observations [43]. Log P or other measures
of hydrophobicity are now used extensively in drug discovery
and predictive toxicology. The Hansch-type approach that cor-
relates physicochemical properties with activity using multi-
variable regression method has been widely applied to problem
areas such as toxicity, enzyme inhibition, ligand–receptor
binding, carcinogenicity, mutagenesis, and metabolism [1].

Fundamental to QSAR is development of a model relating
the molecular structures of a set of chemicals with their bio-
logical activities. The nature of the descriptors used, and the
extent to which they encode the structural features of the mol-
ecules that are related to the biological activity, is a crucial
component of any QSAR study. Early QSAR studies concen-
trated on establishing a correlation between biological activity
and experimentally derived physicochemical properties, such
as s, log P, pKa, and molar refractivity (MR). The predominant
method of correlation was multiple linear regression (see Ap-
pendix) [1,2,44]. Although this approach is still widely ap-
plied, the experimental physicochemical parameters have been
replaced largely by scores of computer-generated descriptors
each of which encodes a particular molecular feature. For in-
stance, the CODESSA program (Semichem, Shawnee, KS,
USA) and the Cerius2 program (Accelrys, San Diego, CA,
USA) each can generate hundreds of calculated descriptors to
represent the structure of a molecule.

Types of descriptors

In general, molecular descriptors used in 2D QSAR can be
grouped into three categories: (1) 2D (e.g., molecular con-
nectivity), (2) 3D (e.g., molecular surface area), and (3) phys-
icochemical properties (e.g., log P). The 2D descriptors are
calculated solely on the basis of 2D structure, in which graph
theory is widely employed for this purpose. In contrast, 3D
descriptors require the 3D geometry of structures and are sen-
sitive to the particular conformation adopted by a flexible mol-
ecule. Physicochemical descriptors characterize the properties
of the entire molecule in a single value.

The descriptors for 2D QSAR can also be categorized ac-
cording to their nature as well as calculation method, such as
constitutional, topological, geometrical, electrostatic, quan-
tum-chemical, and thermodynamic descriptors. The simplest
descriptor type is constitutional, which reflects the molecular
composition without regard to geometric or electronic structure
(e.g., atom counts, molecular weight, the number of rotatable
bonds, and the number of hydrogen-bond donors and accep-
tors). Topological descriptors, which include the Kier and Hall,
Randic, and Wiener indices, encode molecular connectivity
(bond information between a pair of atoms in a molecule). In
particular, the E-State descriptors have recently gained con-
siderable popularity in QSAR studies [45–48]. Geometrical
descriptors (sometimes called spatial descriptors), such as mo-
ment of inertia, molecular surface area, shadow indices, and
molecular density and volume, require the 3D coordinates of
a structure. Quantities such as sum of atomic partial charges
and sum of atomic polarization are examples of non-3D elec-
trostatic descriptors. Dipole moment and the Jurs charge partial
surface area [49,50] are 3D electrostatic descriptors that reflect
particular aspects of charge distribution of a molecule. Quan-
tum-chemical descriptors such as the highest-occupied molec-
ular orbital and the lowest-unoccupied molecular orbital en-
hance the conventional descriptors by providing information
about the internal electronic properties of molecules. The ther-
modynamic descriptors, found in many early Hansch-type
QSARs, are all non-3D, although some contain 3D informa-
tion. These include molar refractivity (MR) as a combined
measure of molecule size and polarizability, log P to char-
acterize the hydrophobicity of the molecule, heats of forma-
tion, and the (de)solvation free energies for water and for
octanol.

For the calculation of molecular descriptors used in 2D
QSAR, it is usually sufficient to generate the necessary struc-
tural information either from experimental methods (e.g., X-
ray crystallography or nuclear magnetic resonance spectros-
copy) or from calculations using molecular mechanics (MM).
However, some descriptors (e.g., highest-occupied molecular
orbital and the lowest-unoccupied molecular orbital energies)
require calculations by quantum mechanics (QM). To the best
of our knowledge, few studies have attempted to compare the
information content of the MM-based descriptors with that of
the QM-based descriptors. Recently, Tong et al. [51] compared
two QSAR models that employed different geometries (one
MM calculated and another QM calculated) to calculate values
for the same set of molecular descriptors. Variable selection
in both cases was achieved using the Genetic Function Ap-
proximation [52] ([GFA]; see the description of the method
in the next section). A slightly better QSAR model was ob-
tained for the QM-based descriptors than for the MM-based
descriptors.
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Variable selection

One key for obtaining a useful QSAR model is to select
descriptors (variables or factors) that are information rich.
Commercial molecular modeling programs make it possible
to choose from hundreds or even thousands of molecular de-
scriptors. The challenge is to select that subset of descriptors
that is capable of representing the most critical structural and
physicochemical features associated with activity. Often, a
small ensemble of descriptors will be sufficient to capture most
of the variation between structure and activity [53]. Effective
descriptor selection, otherwise known as variable selection, is
thus an integral and inseparable part of the QSAR modeling
process. In fact, most improvements in 2D QSAR have been
in the development and use of statistical approaches to make
the selection of descriptors more effective.

Among descriptor selection methods, the GA approach has
been particularly effective and efficient [54,55]. Genetic al-
gorithm, as the name implies, is based on the principle of
Darwinian evolution. A GFA approach developed by Rogers
et al. [52] and implemented in Cerius2 (Accelrys) is a popular
GA-based statistical approach that is now widely used in
QSAR model development. The GFA starts with random se-
lection of sets of descriptors from an original descriptor pool.
A multivariate regression technique is then used to develop a
number of QSAR equations for each set of descriptors to form
a QSAR equation pool (100 equations is default). Next, the
quality of each individual equation is estimated using a lack-
of-fit fitness function [54,55], and the equations are rank-or-
dered in accordance with fitness. Following Darwinian pre-
cepts, the two best QSAR equations (parents) are mated to
produce offspring QSAR equations (children); a crossover pro-
cess takes descriptors (alleles) from each parent to form the
offspring descriptors. Finally, the genetically improved off-
spring QSAR equations replace the worst equations in the
original equation pool. The overall process is repeated many
times (typically 20,000 times) until no significant improvement
is observed in the model and good combinations of descriptors
are discovered and are dispersed throughout the population of
QSAR models. We have found that the descriptors used by
the majority of equations in the final equation pool are most
relevant to the biological mechanism of action [51].

Although the general process is the same, GA-based QSAR
approaches vary in a number of ways. Differences are found
in the mating process, statistical method used, and the fitness
function. For example, in a GA-PLS method reported by Cho
et al. [56] (http://mmlin1.pha.unc.edu/;jin/QSAR/GApPLS/
gapls.html), PLS is used to construct QSAR models. The fit-
ness function, 1 2 (N 2 1)(1 2 q2)/(N 2 PC) where N is the
data size and PC is the optimal number of PCs, is directly
weighted by q2, the cross-validated r2. A descriptor crossover
operation is performed for two parents that are randomly se-
lected from the original QSAR population to produce two
offspring QSAR equations. Next, each offspring is subjected
to a random single-point mutation where one descriptor is
either added or removed. The fitness function is applied to
each offspring to determine if the mutation increased or de-
creased fitness compared to the parents. If the offspring are
better than the parents, they replace the parents; otherwise, the
parents are retained. A statistically robust 2D QSAR model
(q2 5 0.85) was developed for a set of dopamine transporter
ligands using the GA-PLS approach [57].

Zheng and Tropsha [58] reported an automated variable

selection QSAR method that is based on the k-Nearest Neigh-
bor (kNN) principle. In this so-called kNN-QSAR method, a
chemical’s activity is estimated as the mean activity value of
its k nearest neighbor based on Euclidean distance in a mul-
tidimensional descriptor coordinate system. An optimum sub-
set of descriptors is determined using a simulated annealing
method where a QSAR equation with randomly selected de-
scriptors is compared with the same equation that is perturbed
by randomly removing and replacing a small number of de-
scriptors. If the perturbed equation is better, it is accepted. If
the perturbed equation is worse, its acceptance or rejection is
based on the Metropolis criterion. The method was tested on
a number of data sets demonstrating its effectiveness and gen-
erality.

Fragment-based QSAR

Predicting chemical properties and activities based solely
on the fragments (or substructures) of molecules has attracted
considerable attention by virtue of its simplicity and speed of
application. The simplest form of structural representation, the
simplified molecular input line entry specification (SMILES)
notation, is the only structural information needed for this type
of modeling. No need exists for time-consuming determination
of 3D structure, putative binding conformations, and molecular
alignment, as is the case for some 2D QSAR and all 3D QSAR
methods. Fragment-based QSAR approaches are particularly
useful for rapidly screening chemical libraries against a given
target and a given assay system—needs that are often en-
countered in both drug discovery and toxicology.

The earliest attempt to utilize substructural fragments to
predict activity was the Free-Wilson Method in 1956 [59]. The
method assumes that activity (or property) is linearly corre-
lated with the additive and constant contribution of the sub-
stituents on a basic molecular structure. A similar approach
was used [60] for CLOGP (BioByte, Claremont, CA, USA)
calculation where a molecule’s octanol–water partition coef-
ficient P (given as log P) is estimated by adding the log P
contribution from each individual fragment comprising the
molecule. The atom-based Alog P method developed by Ghose
and Crippen [61–63] is calculated in a similar fashion using
the equation log P 5 S niai, where ni is the number of atoms
of type i and ai is the atomic log P contribution. The CASE
program developed by Klopman and Wang [64] analyzes the
statistical significance of the distribution of the fragments pre-
sented in active versus inactive chemicals to determine key
fragments (biophores and biophobes) that are associated with
the activity under study.

Recently, a novel fragment-based QSAR approach, Holo-
gram QSAR (HQSAR), was introduced by Tripos (St. Louis,
MO, USA). In HQSAR, each molecule in the data set is divided
into structural fragments that are then counted in bins of a
fixed-length array to form a molecular hologram. This process
is similar to the generation of molecular fingerprints often used
for database searching and molecular diversity calculations
[65]. The bin occupancies of the molecular hologram are struc-
tural descriptors (independent variables) encoding composi-
tional and topological molecular information. A linear regres-
sion equation that correlates variation in structural information
(as encoded in the hologram for each molecule) with variation
in activity data is derived through PLS regression analysis to
produce a QSAR model. Unlike other fragment-based methods
[66], HQSAR encodes all possible molecular fragments (linear,
branched, and overlapping). Optionally, additional 3D infor-
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mation such as hybridization and chirality may also be encoded
in the molecular holograms. Molecular holograms are gener-
ated in the same manner as hashed fingerprints where different
unique fragments may populate the same holographic bin al-
lowing the use of a fixed-length hologram fingerprint. This
hashing procedure emphasizes the importance of patterns of
fragment distribution within the hologram bins, which repre-
sents the nature of chemical structures more appropriately.
Hologram QSAR has several attributes, including speed, re-
producibility, and ease of use, that suggest its potential utility
for prioritizing large numbers of chemicals for subsequent test-
ing [67].

3D QSAR

The 3D QSAR, which correlates spatially localized features
across a chemical series with biological activity, has attracted
considerable attention in QSAR over the past decade. Because
the descriptors used to represent chemical structure usually
encode location-dependent structural characteristics that ac-
count for activity, the molecular structures need to be aligned
across the series. Descriptor types distinguish the two primary
types of 3D-QSAR methods: lattice-based descriptors and sur-
face-based descriptors. Among the lattice-based methods,
Comparative Molecular Field Analysis (CoMFA) is by far the
most studied and applied 3D-QSAR method. In CoMFA, align-
ment of chemical structure is of paramount importance yet
somewhat subjective. Alignment is easier and more accurate
given knowledge of the mechanism of action at the molecular
level to guide the definition of meaningful molecular alignment
rules. For example, the availability of crystal structure data
for a bound ligand-receptor complex will assist in identifica-
tion of similar structural features across a series, such as the
location at which critical hydrogen bonds or steric interactions
occur. Thus, alignment is more or less a knowledge-guided
process. Notwithstanding the drawbacks associated with the
subjective nature of alignment, efforts to develop alignment-
free 3D-QSAR methods (e.g., CoMMA [68,69], WHIM [70–
72], and EVA [73,74]) have been only partially successful.
For example, CoMMA utilizes the zeroth-, first-, and second-
order spatial moments of the charge (e.g., quadrupolar mo-
ments) as well as the mass distribution (e.g., moments of in-
ertia) to capture 3D structural information. When applied to
the same steroid data set used in the first published CoMFA
model [75], CoMMA produced comparable statistical results.
One of the key components in CoMMA is the principal quad-
rupolar axes calculated with respect to the molecular center
of dipole. A unique feature of this method consists of the
descriptors known as dx, dy, and dz, which measure the dis-
placement between the center of mass and center of dipole
with respect to the principal inertial axes. Unfortunately, the
value of these descriptors equals infinity for symmetric mol-
ecules whose dipole moment is zero, a drawback that may
account for the limited number of published CoMMA appli-
cations.

CoMFA

CoMFA is accessible through the Comparative Molecular
Field Analysis software. To construct a CoMFA model, a col-
lection of chemicals with known activities (the training set)
are first aligned together, usually employing structure simi-
larity as the basis for alignment. The aligned molecules are
then embedded in a 3D grid, after which the steric and elec-
trostatic fields are computed for each chemical at every grid

point surrounding the molecules. The variations in these steric/
electrostatic fields are then correlated with variations in the
observed biological activity using PLS.

Since CoMFA was first introduced by Cramer et al. [75]
in 1988, a large number of applications have been reported in
the literature. The Dialog Science Database (Dialog, Cary, NC,
USA) that reports scientific citations shows an ever-increasing
number of CoMFA applications: 66 between 1988 and 1992,
392 during the period of 1993 to 1996, and 652 from 1997 to
the present. With such rapid and widespread usage, it is not
surprising that CoMFA has been the subject of numerous cri-
tiques and review articles [5,53,76,77]. It has been found that
CoMFA is relatively insensitive to variations in geometry as
calculated using various methods. For example, no appreciable
differences in CoMFA results were observed using molecular
geometry generated with MM when compared to geometry
generated with semiempirical QM [78]. Similarly, no signif-
icant advantage has been identified for calculation of the atom-
ic partial charges using more rigorous QM methods compared
with simple methods such as Gasteiger-Marsili [79]. With re-
spect to calculating geometry and charge distribution at least,
it appears more important that the methods employed be con-
sistent rather than precise or correct in the absolute sense.

Because locally steep spatial gradients can exist in the cal-
culated steric and electrostatic fields, several studies have fo-
cused on the effects of grid spacing and lattice position [78].
CoMFA superimposes a 3D lattice on the molecules, and the
steric and electrostatic fields are computed at each grid point
located in the intersection of the lines comprising the lattice.
The grid spacing is the constant distance between any two
adjacent, parallel lines of the lattice, while lattice position
determines the spatial position and orientation of the rigidly
aligned molecules with respect to the lattice lines within a box
of fixed dimensions. For a particular series of aligned mole-
cules, Cho and Tropsha [80] reported a dependency on lattice
position that could be as large as 0.5 in q2. Such sensitivity
may result from a fixed grid spacing close to a molecule surface
where steric and electrostatic fields vary dramatically. The
larger the grid spacing is, the larger the field change between
grid points, and a significant loss of information can occur if
the grid is too coarse [80]. Many studies have shown that more
stable and statistically robust models are obtained with a 1Å
versus a 2Å grid spacing [81]; these studies used training sets
that were either small, comprised a congeneric series, or both.
More recently, we [12] reported a CoMFA model with a train-
ing set comprising 130 highly diverse estrogens that had been
aligned with the guidance of crystal structure information for
several chemicals. Using all-orientation search and all-place-
ment search methods [82] to explore every possible orientation
and placement of the aligned molecules in the CoMFA region,
no significant variation of q2 with lattice position was found.
Moreover, no significant improvement was found in the model
by switching the grid spacing from 2Å to 1Å. One explanation
for this insensitivity to grid spacing may be that a large and
properly aligned training set of structurally diverse chemicals
provides a much higher signal-to-noise ratio in a 3D grid for
PLS modeling.

Another active area in CoMFA development has been meth-
ods to improve model performance through variable selection.
A number of methods have been proposed, including gener-
ating optimal linear PLS estimation-guided region selection
[83], q2-guided region selection (q2-GRS) [80,84], a region-
focusing approach available in SYBYL (Tripos), and so forth.
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These separate but related methods did yield some improve-
ment when implemented on small training data sets. However,
no improvement in CoMFA performance was realized when
region focusing was applied to a large and diverse data set
[12].

CoMFA uses Lennard-Jones and Coulomb potentials, re-
spectively, to calculate the steric and electrostatic field ener-
gies. A number of other fields have been used separately or
in combination with the standard CoMFA fields in several
studies [85–87]. In particular, several attempts have been made
to augment the standard CoMFA fields with field descriptors
representing hydrophobicity [85], other electrostatic charac-
teristics (molecular orbital fields [88], E-state fields [86]), and
hydrogen bonding [87]. For example, Kim [87] has reported
the use of the direction-dependent 6 to 4 function of the GRID
program [89] to generate hydrogen bonding fields. The hy-
drophobic interaction (HINT) technique [86] calculates the
hydrophobicity field for a given molecule at each grid inter-
section point using an empirical equation:

A 5 S 3 a 3 Rt i i it (1)

where Si and ai are solvent-accessible surface area and hydro-
phobic atom constant for atom i, respectively, while Rit 5 e2r

(r is the distance between atom i and field point t). Further-
more, Kellogg et al. suggest that E-state fields based on a 3D
field can be used alone or in combination with HINT in
CoMFA [86].

After reviewing 364 CoMFA models reported during the
1993–1996 period, Kim et al. [77] concluded that selection of
the bioactive conformations and their alignments are the two
most crucial steps in CoMFA. If bound ligand-receptor crystal
structures are available for every chemical under study, these
can readily be used as the bioactive conformation. Moreover,
by superimposing corresponding amino acids in the receptor-
active site, the alignment of the ligands is apparent. However,
the availability of such a wealth of crystal data is a rare event,
such that determination of the bioactive conformation(s) and
alignment rules is critical to obtaining a high-quality CoMFA
model.

Selection of the bioactive conformation

While in most cases the actual bioactive conformations for
the training set chemicals are unknown, a single conformation
for each chemical is normally chosen a priori. Lacking ex-
perimental data, alignment typically proceeds by aligning com-
mon-core structural frameworks. For a training set with a core
framework, where the primary differences are in position and
lengths of the side chains, the selection of the bioactive con-
formation will likely have minimal impact on the statistical
performance of the resulting model, provided the side chains
are consistently aligned.

If receptor-bound ligand structures are known for one or
more chemicals, the bound conformations can be used as tem-
plates to determine the conformations of chemicals with cor-
responding structural frameworks [12]. Furthermore, identi-
fying pharmacophores that are likely to be associated with
activity can aid in selection of conformations for chemicals
that are not similar to the templates [90]. Initial conformations
can be determined by adjusting the rotatable bonds in such a
way that key features (e.g., hydrogen bonds, hydrophobic cen-
ters) are proximal in alignment to that of the templates [91].
Next, a routine energy minimization is applied to derive the
putative bioactive conformations, or the chemist’s scientific

intuition is used to conjecture a higher-energy active confor-
mation. In some cases, multiple ways exist to overlay key
features on the templates, in which case conformation selection
is integral to determination of the alignment rules [92]. For
example, in the study of two classes of acetylcholinesterase
inhibitors, N-benzylpiperidine benzisoxazoles and 1-benzyl-4-
[2-(N-benzoyl-amino)ethyl]-piperidines (NBEPs), two confor-
mations for the NBEPs were examined. With two distinct clas-
ses of chemicals involved, the first conformation maximized
similarity on the basis of steric field and the other on the basis
of electrostatic field. It was found that both conformations were
plausible, given that the active site of the enzyme is relatively
large and thus may allow inhibitors to bind in multiple con-
formations [92].

If no experimental data are available for a ligand-macro-
molecule complex, conformationally restricted chemicals and/
or crystal structures of small molecules from the Cambridge
Structural Database (CSD) can reasonably be taken as the start-
ing points for ascertaining or inferring the bioactive confor-
mations. It is also common practice to use the putative global
minimum-energy conformation, which might be found by ap-
plying, for example, the following procedure [93–95]: Each
molecule is optimized to its local minimum-energy confor-
mation, the energy-minimized structure is subjected to sys-
tematic search over all rotatable bonds, and the molecule is
reminimized after each rotatable torsion angle is set to its low-
energy conformation. In cases where multiple conformers are
identified with similar energies, trial CoMFA models might be
constructed for some or all possible combinations of these
unique conformers. The combination yielding the statistically
best model is usually retained. However, it is not uncommon
to find examples where widely different choices of putative
bioactive conformations have yielded CoMFA models with
virtually identical statistical validity [96].

Alignment rules

In a CoMFA study, proper alignment of the molecules is
critical yet often problematic. An optimal alignment can be
defined as that achieving the maximum superposition of steric
and electrostatic fields of a set of molecules. In reality, what
is usually derived is a set of rules to be applied to a set of
molecules, thereby ensuring consistency in the procedure. The
alignment proceeds one molecule at a time, and alignment
varies from molecule to molecule based on consideration of
structural similarity or diversity. Alignment determines to what
extent the steric and electrostatic fields differ from one mol-
ecule to the next. Hence, alignment substantially influences
the results of the model, and significant and relevant results
should be expected only for valid alignments.

For a set of congeneric chemicals, it is reasonable to assume
that their desolvation energies and entropy effects will be ap-
proximately the same such that they can be aligned on the
basis of their structural commonality. For a structurally diverse
set of chemicals, no straightforward alignment rule based on
such commonality exists. The identification of common struc-
tural features based on knowledge or assisted by computational
software, such as CATALYST (Accelrys) or DISCO [97], may
be helpful for selection of key pharmacophore elements for
superposition [90]. For example, in a study of 130 diverse
chemicals [12] that can be divided into more than six classes
for estrogen receptor binding, six pharmacophore elements
derived from the template molecule, 17b-estradiol, were iden-
tified as important for estrogen receptor binding. When each
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chemical class was aligned to the template based on the cor-
responding pharmacophore elements using a least-squares fit-
ting method, the model exhibited good statistics and yielded
accurate predictions for two external validation data sets.

In another recent study, Shim et al. [98] employed the DIS-
CO module, accessed through the SYBYL program, to help
identify the corresponding pharmacophore elements in a di-
verse series of CB1 cannabinoid receptor ligands that included
both classical cannabinoids and aminoalklyindoles (AAIs),
which belong to two distinctly different chemical classes. This
analysis enabled these workers to build a unified pharmaco-
phoric map for the CB1 cannabinoid receptor that encompassed
both chemical classes. To extend the utility of this concept,
Shim et al. [99] applied the concept of this unified pharma-
cophoric map to construct a unified CoMFA model for a mixed
training set of cannabinoids and aminoalklyindoles that ex-
hibited excellent self-consistency (r2 . 0.98) and predictive
ability (q2 ø 0.5).

Chemistry offers many examples of chemicals that pose
unique challenges in terms of molecular alignment by virtue
of their distinctive molecular structure, and the field of envi-
ronmental toxicology is no exception. A case in point would
be the polycyclic aromatic hydrocarbons (PAHs), which, un-
like chemicals encountered in drug discovery programs, are
notable for their flat geometry and absence of any notable
pharmacophoric features. In such cases, ingenuity must be
called on to derive a basis for molecular alignment. In this
regard, Welsh et al. [100] employed the moments of inertia as
a basis for aligning a large and structural diverse series of
PAHs to construct separate CoMFA models for predicting their
sublimation enthalpy and formation enthalpy. In a related
study, Collantes et al. [101] demonstrated that alignment using
moments of inertia could be extended to construct CoMFA
models for predicting the chromatographic retention of these
PAHs.

Because of its sensitivity to alignment, a CoMFA model is
strongly dependent on the experience of the investigators.
Largely for this reason, different investigators normally cannot
reproduce CoMFA models. Realizing the difficulties associ-
ated with the manual alignment procedure, several efforts have
aimed at development of an automatic alignment algorithm
that systematically evaluates different alignment rules. The
Steric and Electrostatic Alignment (SEAL) program offers an
alternative approach reducing human judgment in alignment
by using the rigid body alignment procedure. According to
this algorithm, all molecules in the training set are aligned to
a designated template molecule, with only steric and electro-
static interactions considered, although additional factors (e.g.,
hydrogen bonding, hydrophobicity) can be included. A fast
Monte Carlo search procedure is used to identify all alignments
that maximize overlap of both steric and electrostatic features.
Satisfactory results are obtained using the following Lorentz-
ian functional form to compute the similarity score AF for a
given alignment:

2A 5 2 w /(1 1 ar ) (2)O OF ij ij

where the subscript i runs over the atoms in the first structure
and j runs over the atoms in the second structure and rij is the
distance between atom i of the first structure and atom j of
the second structure. Two parameters need to be manually
adjusted: the attenuation factor a, which controls the coarse-
ness or fineness of molecular feature recognition, and the
weighting factor, wij, which determines the percentage of the

contribution between steric and electrostatic interaction to the
alignment. Obviously, SEAL is not an entirely automatic pro-
cedure but does offer a number of advantages compared to the
full manual scheme [102]. For example, preassignment of
atom–atom alignments are not required; thus, counterintuitive
alignments are not eliminated as possibilities. Also, since all
alignments are rank-ordered in accordance to a similarity
score, modelers have the flexibility to test what they believe
based on their understanding of the mechanism to be a more
biological meaningful alignment, even though it might not rank
the highest in score. Tong et al. [102] have compared results
of manual and SEAL alignment for representative molecules
from various chemical classes of estrogens in their minimum-
energy conformation with respect to the template 17b-estra-
diol. The superposition solutions for the two methods are very
close for both steroids and phytoestrogens that have a back-
bone structure and overall shape similar to the template. How-
ever, salient differences exist in superposition solutions for
those chemicals that are less similar to the template
[95,102,103].

FlexS is a rapid and automatic approach for superimposing
a target molecule to a template structure. It was developed by
Lemmen et al. [104,105] and has been implemented in SYBYL
software. FlexS first decomposes the target molecule into many
small and relatively rigid fragments from which a base (or
anchor) fragment is selected to place on the template molecule
that is considered to be a rigid structure. Then the remaining
fragments of the target molecule are incrementally added to
the base fragment in a stepwise fashion to reconstruct the target
molecule. At each construction step, flexibility is considered
by allowing all possible conformations. Finally, the superpo-
sition quality for each solution is ranked using a scoring func-
tion. This is a rapid process with a mean computing time per
target molecule of about 90 s on a standard present-day work
station, making the method particularly suitable for virtual
screening. The quality of superposition using FlexS is depen-
dent on a number of factors, including the selection of the
base fragment and the size of target molecules. A good base
fragment should have a rigid structure with multiple phar-
macophore sites (H-bonding, hydrophobic and salt bridges).
Too flexible or too large of a target structure may result in
poor superposition.

Other 3D QSAR approaches

The ubiquity and popularity of CoMFA gives testimony to
the effectiveness of 3D QSAR methods for both drug discovery
and toxicity prediction. However, a number of drawbacks are
associated with the technology, most obviously the neglect of
solvation/desolvation, receptor flexibility, ligand flexibility,
and entropic effects.

Continued development of new 3D QSAR approaches and
refinements of the existing 3D technologies are needed, and
several notable efforts have already been made. Hopfinger et
al. [106] developed a 4D-QSAR method with the aim of over-
coming the weakness of lack of conformational flexibility. The
method integrates conformational and alignment variability
into the development of 3D QSAR models. A similar approach
has also been reported by Vedani et al. [107,108].

Considered in some ways an extension of CoMFA, Com-
parative Molecular Similarity Indices Analysis (CoMSIA) re-
places the field descriptors in CoMFA with descriptors that
recognize the spatial (dis)similarity of aligned molecules
[109]. In the CoMSIA approach, the similarity of molecules
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Fig. 1. Thermodynamic cycle used in free energy perturbation cal-
culations.

is evaluated via the similarity of each molecule in the data set
with a common probe atom that represents a certain type of
property (e.g., steric, electrostatic). When CoMSIA and
CoMFA were compared using several data sets, similar sta-
tistical results were observed for both approaches. However,
unlike the Lennard-Jones potential used in CoMFA, the Gauss-
ian function used in CoMSIA has no cutoff value for the in-
teraction close to the molecular surface. Consequently, the
color contour plots generated by CoMSIA may be biologically
more meaningful [109].

QSARS BASED ON LIGAND–RECEPTOR INTERACTION

The recent growth of lab-on-chip (microarray and protein
array) technology [110–112] and advanced recombinant DNA
technology (cDNA cloning, Southern blotting, PCR, and so
on) has in the past decade enabled rapid identification of bi-
ological targets as well as their expression at sufficient purity
and quantities adequate for structure determination. Today,
some 14,265 structures are available in the Brookhaven Protein
Data Bank (on January 23, 2001), or three times as many as
there were three years ago [113]. This dramatic increase in
the availability of 3D structures for many macromolecules has
greatly expanded the list of potential drug targets. This increase
has also provided a rich source of information for QSAR and
related computational techniques [114,115]. Scoring functions
to estimate docking potential are often built into molecular
modeling software programs, and such algorithms produce de-
scriptors for ligand-receptor interaction that may be suitable
for QSAR. Calculations of ligand-receptor interaction energies
will likely play an important role in the future of QSARs [116].

Quantitative structure–activity relationship methods that in-
corporate information on ligand-receptor interactions have
been investigated by a number of groups. The receptor co-
ordinates are required either from crystal structure data or from
homology modeling analysis, as is energy minimization of the
bound ligand-receptor complex. VALIDATE [117] uses phys-
icochemical properties of both ligands and ligand-receptor
complexes as descriptors for QSAR. The descriptors repre-
senting the ligand-receptor complex encode information on the
following: steric and energetic intermolecular interactions, li-
gand transfer from solution to the binding site, conformational
entropy and enthalpy, and ligand-receptor contact surface ar-
eas.

The Comparative Binding Energy analysis (COMBINE) ap-
proach developed by Ortiz and Wade [118] also uses descrip-
tors that encode ligand-receptor interactions for QSAR with
PLS regression. The ligand-receptor interactions are decom-
posed according to physical type (van der Waals, electrostatic,
and so on) for each interaction between defined fragments of
the ligand and defined regions of the receptor. Even though
the efficiency of using the decomposed intermolecular inter-
action energies as descriptors compared to other traditional
descriptors for QSAR remains debatable, the recognition of
the contribution of specific regions and/or fragments to the
activity may be advantageous. Recently, DNA binding spec-
ificity was analyzed with COMBINE for 16 different DNA
response elements and 20 mutant glucocorticoid receptors
[119]. The COMBINE analysis indicated that the most im-
portant properties for determining binding specificity are the
changes of the solvation free energies of the mutated base on
binding, together with electrostatic interactions of the mutated
nucleotides with certain charged amino acids.

Direct prediction of ligand–receptor binding affinity can

also be accomplished simply by calculating the difference be-
tween the potential energy of the ligand–receptor complex and
the potential energy of the ligand and receptor separately. Of
course, the free energy of binding can be calculated more
precisely using the Free Energy Perturbation (FEP) method
[120]. In this method, the relative binding energies for pairs
of chemicals are determined using a thermodynamic cycle in
which the structure of one chemical (A) is perturbed into the
structure of another (B), both in the receptor site and in solvent,
as shown in Figure 1.

The nonphysical path between two states (or structures) A
and B is simulated using thermodynamic integration of the
relative free energy perturbation method, in which a coupling
parameter l is used to adequately describe a continuous con-
version between two states. Thus, the relative binding free
energies are given as the difference of two relative free en-
ergies: relative free energies of two ligands in solution versus
the relative free energies of those two ligands bound to the
receptor. This approach has been reported to yield relative free
energies that are accurate to 61 kcal/mol when compared with
experiment results [120]. However, the substantial amount of
computer time required makes the method impractical for rou-
tine screening and assessment of many chemicals. Recently,
Oostenbrink et al. [121] reported a single-step perturbation
method allowing the calculation in a single simulation of rel-
ative free energy for a large number of polyaromatic hydro-
carbons binding to the estrogen receptor a-subtype. The agree-
ment between the calculated and experimental results had a
maximum deviation of only 3.3 kJ/mol. Moreover, this method
is between four and six times less computationally intensive
as the thermodynamic integration method.

COMPARISON OF 2D AND 3D QSAR METHOD

Choosing between 2D and 3D QSAR for a particular prob-
lem depends on a number of factors. Since 2D QSAR requires
no time-consuming structural alignment of the molecules such
as required for CoMFA, it appears more suitable to support
the high-speed technological processes that use combinatorial
synthesis and HTS for lead discovery. The same would hold
true in an environment that required rapid screening for tox-
icity of a large number of chemicals. Since some ADMET
properties are directly associated with global properties of a
molecule, 2D QSAR has often proved to be more efficient than
3D QSAR for this application [19]. On the other hand, 3D
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QSAR is likely more accurate for a biological endpoint that
is dependent on the geometry of key structural features. Gen-
erally, 3D QSAR is most successful for predicting small mol-
ecule–receptor interactions.

Another consideration for choosing between 2D and 3D
QSAR is the value of information that is gained other than
the value of prediction per se. For example, since 3D QSAR
descriptors generally are lattice or surface grid descriptors,
they might provide considerable insight into the SAR, such as
the mechanism of action. This insight, in turn, with the aid of
modern scientific visualization, can foster communication and
understanding among multidisciplinary teams leading to the
design of more efficacious and/or less toxic drug candidates.

Hoffman et al. [122] studied several 2D and 3D QSAR
methods that were applied to a relatively small data set of 29
chemically diverse D1 dopamine antagonists. Two 2D QSAR
methods, kNN-QSAR [58] and GA-PLS, were compared with
the traditional and q2-GRS CoMFA [80]. All four approaches
were found to yield reasonable predictive models with q2 val-
ues of 0.57 for CoMFA, 0.54 for q2-GRS CoMFA, 0.73 for
GA-PLS, and 0.79 for kNN-QSAR. However, relatively poor
self-consistency was observed for GA-PLS, kNN-QSAR, and
q2-GRS CoMFA with r2 values of 0.72, 0.56, and 0.49, re-
spectively. In contrast, traditional CoMFA yielded much high
r2 value (0.94). One possible explanation for the poorer r2

values typically obtained from the GA-based techniques is that
their fitness function is mathematically dependent on q2 but
not r2. Hence, the fittest QSAR models generated by these GA-
based techniques are aimed at maximizing q2 even at the cost
of lowering r2.

Tong et al. [67] compared the results from two 2D QSAR
methods with those from CoMFA for three estrogenic activity
data sets. The two 2D QSAR methods were the classic QSAR
using descriptors generated from CODESSA and HQSAR.
Data sets 1 and 2 contained the same set of structurally diverse
molecules but differed with respect to biological endpoints.
Data set 3 was composed of a set of congeners exhibiting
several degrees of conformational flexibility. All three QSAR
methods used PLS to derive the regression model; conse-
quently, the only substantive difference among the three meth-
ods involved the nature of their chemical descriptors. Specif-
ically, CoMFA employs steric and electrostatic field descrip-
tors that encode detailed information concerning intermolec-
ular interactions in a 3D grid surrounding each molecule.
CODESSA program calculates molecular descriptors on the
basis of 2D and 3D geometrical input optionally supplemented
by quantum-chemical properties. HQSAR calculates exclu-
sively fragment-based molecular descriptors. The statistical
quality of the CoMFA and HQSAR models were comparable
and generally better than the classical QSAR model. More
recently, HQSAR and CoMFA were further compared by using
a relatively large data set that contained 130 structurally di-
verse estrogens [12]. The models’ performance was investi-
gated using both internal validation and external validation.
For the internal validation, the models’ consistency and ro-
bustness were tested using a leave-N-out cross-validation pro-
cedure where the percentage of chemicals left out for predic-
tion was up to 50%. In the external validation, two data sets
containing over 40 chemicals not included in the training set
were used to test the models’ predictive ability. In both val-
idation processes, CoMFA showed superior results over
HQSAR.

MODEL VALIDATION

The current challenge in QSARs is no longer in constructing
a statistically robust model but in developing a model with
the capability to accurately predict the activity. The issue is
how we quantify the quality of the model and validate that
quality.

Generally, we can distinguish two types of model valida-
tion: internal validation and external validation. For internal
validation, the quality of a QSAR model can be assessed in
terms of several statistical measures. The values of r2 and q2

are normally accepted as measurements of the goodness of fit
and predictive ability of the model, respectively. A model is
generally deemed statistically significant if r2 $ 0.9. The value
of q2 is derived from a cross-validation procedure in which a
fraction of chemicals in the training set are excluded and then
predicted by the model generated from the remaining chem-
icals. When each chemical is left out one at a time and the
process repeated for each chemical, this is known as leave-
one-out (LOO) cross validation. If the training set is divided
into N groups with approximately equal numbers of chemicals,
the process is called leave-N-out (LNO) cross validation. Both
LOO and LNO methods test the stability of the model through
perturbation of the regression coefficients by consecutively
omitting chemicals during the model generation procedure.

In recent years, derived from the LOO process has2qLOO

become the de facto measure of a model’s predictive ability,
that is, its ability to extrapolate beyond the training set [123].
A QSAR model with a value of . 0.5 is normally con-2qLOO

sidered to possess significant predictive ability. A preferred
approach for internal validation proposed on theoretical
grounds [124] is to use the LNO method. While the LOO
process is fast and reproducible, it tends to overestimate pre-
dictive ability compared with LNO [125]. Since the LNO pro-
cedure allows more chemicals to be omitted for prediction to
test the model’s stability, tests the ability of the model2qLNO

to extrapolate more so than does . Given the fact that2qLOO

chemicals in each left-out group are randomly selected from
the training set in the LNO process, each LNO run will yield
a different value. It has been proposed that it is necessary2qLNO

to run LNO 100 times for each random N groups (N 5 10 is
recommended) for a valid statistical analysis. A recent com-
parison of CoMFA with HQSAR [12] using LNO with N rang-
ing from 2 to 65 (groups) of a training set composed of 130
chemicals (1.5% 2 50% of the chemicals in the training set),
each 100 times, showed markedly better extrapolation quality
for CoMFA. While the mean values were consistently2qLNO

higher, indicating better extrapolation for CoMFA than for
HQSAR, the decreases in with increasing N were very2qLNO

comparable for both methods. In addition, the standard de-
viation of was consistently smaller for CoMFA than for2qLNO

HQSAR, indicating that CoMFA provided much more robust
QSAR models.

It is important to point out that although r2 and q2 are useful
for validating the quality of a QSAR model, these parameters
alone fail to account for other factors, particularly when PLS
is used to construct a model. One factor is the number of PCs
(or the number of descriptors in Hansch-type QSARs) used to
construct a model that corresponds to the degrees of freedom.
This factor holds particular importance when comparing dif-
ferent QSAR methods applied to the same data set. Since r2

generally increases as more PCs are included in the model, it
seems reasonable to scale r2 by the number of PCs. Another



QSARs: Perspectives on drug discovery and toxicology Environ. Toxicol. Chem. 22, 2003

factor is the range of biological activity within the data set,
which also should be considered during the comparison of the
quality of QSAR models across different data sets. Given that
two QSAR models have the same r2 (or q2) value, the model
derived from the data set with the larger biological activity
range is more valid than that with the smaller activity range.

Alternatively, the standard error and cross-validated stan-
dard error can be used as measures of goodness of fit and
predictive ability [67]. While several ways exist to calculate
the standard error for a regression equation, the number of
degrees of freedom should be factored in when comparing
different models. A more effective measure of model goodness
of fit is the ratio of the standard error to the activity range.
One advantage of explicitly including the range of biological
activity is that the performance of separate QSAR models can
be compared across different data sets.

Even if the model is validated as high quality by internal
cross validation, uncertainty will remain regarding its ability
to predict chemicals not in the training set. To address this
question, external validation data sets are required. Most ex-
perts in the QSAR field, as well as the present authors, assert
that a model’s predictive capability can be fully tested and
validated when robust prediction has been demonstrated with
an external validation data set. Of course, one rarely enjoys
the luxury of setting aside a sufficient number of test-set chem-
icals for use in external validation (10–20% of the data set is
recommended) since in most cases data sets contain barely
enough chemicals to create a statistically robust model in the
first place. Furthermore, many data sets, such as those taken
from in vivo studies or agricultural field tests [126], must first
be pruned using creative measures to eliminate outliers that
would otherwise obscure the underlying QSAR model.

Various studies have attempted to compare QSAR methods
[67,68,122]. However, most comparisons have been made on
small data sets. For example, the steroid data set reported in
the original CoMFA paper [75] is often used as the benchmark
data set for comparison with CoMFA [53]. Since this con-
generic data set would probably not present a great challenge
to most QSAR approaches, caution is warranted in judging the
quality of a new method based solely on this comparison.
Rather, a far more robust comparison would be demonstrated
if a data set that contains a large number of structurally diverse
chemicals with a wide range of activity was to be used.

FUTURE EXPECTATIONS

The current time has been called the golden age of bio-
medical research. Certainly, major breakthroughs in the un-
derstanding of the mechanisms of disease and toxicity in the
postgenomics era are anticipated with much excitement. We
see the prodigious data from microarrays and HTS being com-
bined in large, integrated databases for exploitation with
QSAR methods. New or enhanced QSAR methods should con-
tinue to evolve, enabled by ever-faster microprocessors and
driven by the financial incentives to cost-effectively design
safer, more efficacious drugs. Use of QSAR in toxicology,
particularly in the regulatory arena, may lag the private sector,
but ultimately computer-based prediction of toxicity, based on
chemical structure alone, will become increasingly prevalent.
The scenario is likely to unfold, mechanism by mechanism,
organ by organ.

APPENDIX:

Common Statistical Approach Used In QSAR Study

Several statistical methods are available for QSAR study.
If the number of chemicals and descriptors is small, then sim-
ple linear or multiple linear regression is the good choice. With
a larger number of chemicals and larger pool of descriptors,
partial least squares (PLS) or principal components regression
(PCR) is either preferred or required. Additionally, several of
the methods described here can be used in combination with
various variable selection methods to develop more robust
QSAR equation. For example, the combination of genetic al-
gorithm (GA) with multiple linear regression (MLR) [52,127–
129], PLS [56], and Artificial Neural Networks (ANNs)
[130,131] is reported as effective approaches for QSAR and
other applications.

Simple linear regression

The simple linear regression method correlates each indi-
vidual descriptor with the activity using a standard linear re-
gression calculation to generate a set of QSAR equations. This
method is good for exploring simple relationships between
structure and activity. Comparing goodness of fit measured
commonly by the r2 value, the approach can also be used as
a simple tool for descriptor selection.

MLR

The MLR method calculates a QSAR equation by perform-
ing a standard multivariable regression calculation using a
number of descriptors in a single equation. To avoid chance
correlation, the number of descriptors should not be more than
one-fifth the number of chemicals in the training set. The fewer
descriptors that are used, the more robust and biological rel-
evant the QSAR equation is. A trial-and-error approach might
be used to determine a set of descriptor for a final QSAR
equation. More common practice to select an optimal set of
descriptors for a model is by implementing a variable selection
technique in the model development process, such as GA.

PLS

PLS regression is particularly effective when the number
of descriptors is large compared to the number of chemicals
modeled. Many of the descriptor sets available in commercial
software are both large and covariant. The PLS method reduces
such large volume of descriptors to several principal compo-
nents (PCs) or latent variables that are most correlative with
the activity. The number of PCs defines a descriptor space of
reduced dimension. Selecting the number of PCs for producing
a most predictive model can be done in several ways. Nor-
mally, it is determined by the leave-one-out cross-validation
procedure. The number of PCs can also be selected by the
user, with three to seven seen as typical.

PCR

Principal components regression is a technique like PLS to
handle the situation where the number of descriptors is larger
than the number of chemicals modeled. Principal component
analysis on the original descriptors is first done to derive sev-
eral PCs that incorporate a significant portion of the variance
in the descriptors. The PCs become the new descriptors that
are correlated with activity using MLR. It is worthwhile to
note that each PC is a linear combination of the original de-
scriptors and describes only variance not contained in other
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PCs; thus, the PCs are not covariant like the original descrip-
tors. Additionally, the first few PCs are likely to explain most
of the variance in the data set such that a few PCs (two or
three) are normally used to construct a QSAR equation. An
additional benefit of PCR is the ability to graphically observe
which of the original descriptors contain a large amount of
variance, which in turn can provide insights into the mecha-
nism of action.

Stepwise MLR

The stepwise MLR method calculates quantitative struc-
ture-activity relationship (QSAR) equations by adding one de-
scriptor at a time and testing each addition for significance in
improving the result. This regression method is especially use-
ful when the number of descriptors is large but the key de-
scriptors are not known. As is always the case when using
MLR, the number of descriptors should be much less (typically
one-fifth) than the number of chemicals in order to minimize
the possibility of a chance correlation. This technique could
also be considered one type of variable selection method.

ANN

The ANN is a supervised learning method. It is best thought
of as a nonparametric method to model complex response
surfaces. Each neuron in a network applies a simple transfor-
mation to weighted sum of its inputs. By taking the outputs
from several such neurons and using them as inputs to other
neurons and so on, a very complex response can be modeled.
One impressive feature of ANNs is that several methods to
determine the weights on the sums exist, based solely on the
data. This means that the form of the response model does not
need to be specified beforehand. However, care must be taken
to avoid overfitting the training set.
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